
Newton’s Law of 
Gravitation!

Newton concluded that the gravitational force between any two masses was 
proportional to the masses (make the masses bigger and the gravitational force between 
them will get bigger) and inversely proportional to the square of the distance between 
the center of mass of the two bodies.  The proportionality constant is called the universal 
gravitational constant “G,” and the magnitude of the overall expression as an equality is:!

1.)!

Fg = G
m1m2

r2

Historical Note:  The way Newton determined that it was r squared, versus just r or r to the 
third, was very clever.  His reasoning follows:!

2.)!

The acceleration of a falling apple close to the earth’s surface is                        , where the 
distance between the surface and the earth’s center is approximately 4000 miles. !

aearth = 9.8 m/s2.

The acceleration of the moon around the earth’s surface is                                  , where the 
distance between the earth and moon is approximately 240,000 miles.!

aearth = 2.722x10!3  m/s2.

Note that he got this acceleration by noticing that the time it takes the moon to orbit the 
earth is approximately 28 days, and the acceleration is acceleration.  That is, he observed 
that:!

vmoon =
distance traveled in one orbit

time for one orbit
=

2!R
T

=
2! 240,000 miles( ) 1609 meters/mile( )

28 days( ) 24 hrs/day( ) 60 min/hour( ) 60 sec/min( ) = 1003 m/s.

amoon =
v2

R
=

1003 m/s( )2

240,000 miles( ) 1609 meters/mile( ) = 2.6x10!3  m/s2.

Using the centripetal acceleration information, he additionally wrote:!

Soooo, Newton’s Second Law states the sum of the forces in a particular direction is proportional 
to the acceleration in that direction, so Newton could write:!

Fapple! aapple      
    and
Fmoon! amoon       

BACKGROUND:!

3.)!

Newton also surmised that the farther away the objects were, the small the gravitational force 
produced by each other (i.e., that the force was inversely proportional to some power of the 
distance r between the two).  That is:!

Fapple! 1
rapple

n      

    and

Fmoon!  1
rmoon

n         

All of this allowed him to write:!

aapple  ! 1
rapple

n          "                  9.8 m/s2( )  ! 1
4000 mi( )n  

    and

amoon  !  1
rmoon

n         "      2.722x10#3  m/s2( )  ! 1
240,000 mi( )n        

4.)!

Dividing the top by the bottom of each side of the proportionality, we get:!
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This was the reasoning that led him to conclude that it was the inverse of the distance 
SQUARED that fit the force function (versus the inverse or the inverse cubed, etc.)!

Interesting side note:  When Newton first did this calculation, he got an “n” value that was not 
anywhere close to a whole number.  Believing (evidently) that nature doesn’t act that way, he put 
his theory aside as being incorrect.  The problem was that the then accepted distance between 
the earth and moon was wildly incorrect.  When a better measure of that number was 
published, he went back to his problem, but the more accurate value into his equation and came 
out with an “n” value that was very close to 2.  That is when he embraced his theory as being 
most probably correct.!



Kepler’s Laws!
Kepler’s First:  All planets move in elliptical orbits with the Sun at one of 
the focal points.  (Law of orbits)!

Kepler’s Second:  A line drawn from the Sun to any planet sweeps out 
equal areas in equal time intervals. (Law of areas.)!

Kepler’s Third:  The square of the orbital period of any planet is 
proportional to the cube of the average distance from the planet to the 
Sun. (Law of period.)!

5.)!

Kepler’s First:  All planets move in elliptical orbits with the Sun at one of 
the focal points.!

Kepler’s Second:  A line drawn from the Sun to any planet sweeps out 
equal areas in equal time intervals.!

Using conservation of angular momentum and conservation of 
energy, it is possible to derive an expression for the radial position of 
a planet as a function of its angular position in the orbit (i.e.,  r(O)).  
The derived expression that is that of an ellipse. !

It turns out that the derivable expression for a planet’s area sweep 
with time (i.e., dA/dt) looks just like the derived expression for a 
planet’s angular momentum (give or take a constant).  As the 
angular momentum of a torque-free body is constant, dA/dt must 
also be constant. !

6.)!

Kepler’s Third:  The square of the orbital period of any planet is 
proportional to the cube of the average distance from the planet to the 
Sun.!

This is where the fun begins.  Consider a small mass orbiting a big one.!

moon!

earth!

center of mass of system!

7.)!

Notice that the two objects rotate around the system’s center of mass!!

What if the masses are comparable in size?!

center of mass of system!

8.)!

The center of mass migrates so as to be located somewhere between the bodies.!



The set-up:!

r!m!
M!

R!

9.)!

r!m!
M!

R!

10.)!

The math:  We are looking at a gravitational 
force with a centripetal acceleration with 
the mass’s velocity equal to the net distance 
traveled in one orbit (two pi r) divided by 
the orbital period (T).  With all this, we can 
write:  !

So what happens if “m” is very small in comparison to M 
(as in, satellite-like, or planet versus sun-like)?  Then R goes 
to zero and the “period squared” expression becomes:!
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This is what Kepler observed in coming to his Third Law, and it turns out to be an 
approximation that is good only because our planets are small in comparison to the sun.!

11.)!
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One more thing:  We can rearrange the “period squared” expression to read:           !

Evidently, if we can determine the period (T) of two orbiting stars, then determine either 
the distance between the stars, we can determine the mass within the system.  What’s 
more, if one star is very massive while the other is not (a supergiant and a white dwarf?), 
we will know the mass of the more massive star.!

Alternately, consider the mathematical manipulation 
shown to the right: ! GM =
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What it suggests is that you can also determine the 
mass within a binary system if you can determine 
the period (T) of the two orbiting stars along with 
the velocity of their orbital motion. !


